Performance evaluation of data clustering techniques using KDD Cup-99 Intrusion detection data set
نویسندگان
چکیده
منابع مشابه
Evaluation of Different Data Mining Algorithms with KDD CUP 99 Data Set
Data mining is the modern technique for analysis of huge of data such as KDD CUP 99 data set that is applied in network intrusion detection. Large amount of data can be handled with the data mining technology. It is still in developing state, it can become more effective as it is growing rapidly. Our work in this paper survey is for the most algorithms Data Mining using KDD CUP 99 data set in t...
متن کاملSoft Computing Based Classification Technique Using KDD 99 Data Set for Intrusion Detection System
An intrusion detection system (IDS) inspects all inbound and outbound network activity and identifies suspicious patterns that may indicate a network or system attack from someone attempting to break into or compromise a system. Soft computing techniques resemble biological processes more closely than traditional techniques, which are largely based on formal logical systems. Knowledge Discovery...
متن کاملAnalysis of KDD CUP 99 Dataset using Clustering based Data Mining
The KDD Cup 99 dataset has been the point of attraction for many researchers in the field of intrusion detection from the last decade. Many researchers have contributed their efforts to analyze the dataset by different techniques. Analysis can be used in any type of industry that produces and consumes data, of course that includes security. This paper is an analysis of 10% of KDD cup’99 trainin...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Implementation of Fuzzy c-Means and Outlier Detection for Intrusion Detection with KDD Cup 1999 Data Set
In this paper, a two-phase method for computer network intrusion detection is proposed. In the first phase, a set of patterns (data) are clustered by the fuzzy c-means algorithm. In the second phase, outliers are constructed by a distance-based technique and a class label is assigned to each pattern. The KDD Cup 1999 data set is used for the experiment. The results show that, for binary classif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Information and Network Security (IJINS)
سال: 2012
ISSN: 2089-3299
DOI: 10.11591/ijins.v1i4.821